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Abstract
We extended McMillan’s Green’s function method to study the equilibrium spin
current (ESC) in a ferromagnet/ferromagnet (FM/FM) tunnelling junction, in
which the magnetic moments in both FM electrodes are not collinear. The
single-electron Green’s function of the junction system is directly constructed
from the elements of the scattering matrix, which can be obtained by matching
wavefunctions at boundaries. The ESC is found to be determined only by the
Andreev-type reflection amplitudes as in the Josephson effect. The obtained
expression of ESC is an exact result and at the strong barrier limit gives the
same explanation for the origin of ESC as the linear response theory, that is,
ESC comes from the exchange coupling between the magnetic moments of the
two FM electrodes, J ∼ hl × hr. In the weak barrier region, ESC cannot form
spontaneously in a noncollinear FM/FM junction when there is no tunnelling
barrier between the two FM electrodes.

1. Introduction

Spin related transport in magnetic hybrid systems has been studied intensively for the last two
decades and considerable progress has been achieved since the discovery of the tunnelling
magnetoresistance (TMR) effect [1] in ferromagnet (FM) tunnelling junctions. This effect
originates from the electrical resistances of these junctions being dependent strongly on
whether the moments of adjacent magnetic layers are parallel or antiparallel. The reason is that
the tunnelling electrons are scattered more strongly in an antiparallel magnetic configuration
than in a parallel configuration. As a result, tunnelling junctions with moments in adjacent
magnetic layers aligned antiparallel have larger overall resistance than when the adjacent
moments are aligned parallel, giving rise to TMR. The reverse effect of TMR is the spin transfer
effect predicted independently by Slonczewski [2] and Berger [3] about a decade ago, in which
a sufficiently large spin-polarized current injected from a normal metal (NM) into an FM layer
can lead to magnetic moment reversal in the FM layer.
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Spin transfer torque occurs in magnetic multilayers with noncollinear moments and is due
to the nonconservation of spin current through the interface between NM and FM. Due to
the presence of noncollinearity, the component of spin current transverse to the magnetization
of the layers is not transmitted across the interfaces between NM and FM; in other words, the
discontinuity of spin current at the interface is the origin of the spin transfer effect that can result
in magnetization precession or reversal [4–8]. A large number of experiments have observed
this spin transfer effect in magnetic multilayer structures [9–11], in which one of the FM layers
is very thick and works as a polarizer of electric current with its fixed moment, and the moment
of the thin FM layer may switch when a strong polarized electric current perpendicular to the
layer plane flows through the layers.

As the two magnetization directions in the FM/FM tunnelling junction are misaligned,
an equilibrium spin current (ESC) can flow in the junction without any bias [7]; this
phenomenon is analogous to the Josephson effect that the superconductor macroscopic phase
difference between the two sides of a junction drives a supercurrent through the junction. The
dissipationless ESC will disappear if two moments in the adjacent FM layers are collinear,
parallel or antiparallel. The existence of ESC J has been verified by many authors using
the linear response theory [12–16], and explained as the result of the exchange coupling [17]
between two magnetic moments hr and hl, J ∼ hl×hr. Thus the magnetization phase difference
between the FM electrodes induces ESC in the FM junction as in the Josephson effect. In the
case of a thin barrier between FMs or the strong coupling limit, the behaviour of ESC is still
unknown in the literature and is worth studying.

In this paper, we study the ESC flowing in an FM/FM junction with two fixed noncollinear
magnetic moments using a simple quantum mechanical approach. The present work is
motivated by two factors. Firstly, dissipationless spin current in last several years has drawn
considerable interest and also incurred much debate, such as the controversies in the spin Hall
effect [18–21]. The study of ESC in FM/FM junctions may shed light on the spin current
in spin–orbit coupled systems. Secondly, the well known result of ESC J ∼ hl × hr in
FM/FM junctions in the literature was obtained by using the linear response theory [12–16]
or heuristic derivation [22], thus an exact result of ESC is in order. By extending McMillan’s
Green’s function method, which was originally employed to study the Josephson effect in a
superconductor junction [23], we obtained an exact expression of ESC in the FM/FM junction
at arbitrary tunnelling-barrier strength. ESC is determined only by the Andreev-type reflection
amplitudes, [8, 24] which is similar to the Josephson effect [25, 26]. The exact ESC can
reproduce the well known result stemming from the linear response theory [12–16] in the strong
barrier case, whereas in the opposite case the ESC was found to vanish when there is no barrier
between the two FM electrodes, which indicates the ESC should be a pure quantum mechanical
effect.

This paper is organized in the following way. In section 2, a FM/FM junction model is
given and the single-electron Green’s function of the junction system is constructed from the
scattering coefficients. An analytic expression of ESC in the FM/FM junction is obtained in
section 3 and some discussions are presented. A conclusion is drawn in the last section.

2. Green’s function

The FM/FM tunnelling junction is depicted schematically in figure 1 and the layer between
the FM electrodes can be either an insulator barrier or a normal metal. A simple free electron
model is adopted to describe the FM/FM tunnelling junction and the Hamiltonian reads

H = −h̄2∇2

2me
+ V (x)− θ(−x)hl · σ − θ(x − L)hr ·σ , (1)
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Figure 1. Schematic diagram of an FM/FM tunnelling junction with two noncollinear
magnetizations in the left and right FM electrodes. The middle region M at 0 < x < L can be
either an insulator barrier or a normal metal. The z-direction is taken as the spin quantization axis
parallel to the left magnetization hl.

where me is the effective electron mass and is assumed to be identical in all three regions, the
two FM electrodes and the middle region. hl and hr are the internal molecular fields of the left
and right FM, respectively. σ denotes the Pauli spin operator, and θ(x) is the step function.
The potential energy V (x) may take different values in different regions but remains constant
in both FMs. Here the molecular fields hl and hr (magnetization with energy units) are not
collinear in our consideration and are assumed to be fixed by an external magnetic field or
other methods. Without loss of generality, we take the spin quantization axis of the system to
be parallel to the magnetization of the left FM hl and the direction of hr of the right FM is
described by the polar coordinate (θ , φ).

In a free electron model, the energy dispersions of the two FMs can readily be solved and
they are spin dependent. In the left FM, the eigenvalue is E± = h̄2k2

2me
± hl +Ul and the spinor is

the eigenfunction of σz , and in the right FM, E± = h̄2k2

2me
± hr + Ur and the spin eigenfunctions

are

ψ l
+ =

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
and ψ l

− =
( − sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)

where Ul (Ur) are the different potential energies on the left (right) FM, k is the wavevector
of the electron and ± is the spin index. The spatial eigenfunctions are plane waves. Due
to spin splitting, there are four incoming wavefunctions with their corresponding outgoing
wavefunctions in the left and right FM, as schematically shown in figure 2. �1(x) and �2(x)
are the wavefunctions of the minority spin and majority spin electrons injecting from the left
FM, respectively, while �3(x) and �4(x) are those injecting from the right FM. For example,
the wavefunction of the first type of scattering event �1(x) is given by

�1(x) =

⎧⎪⎪⎨
⎪⎪⎩

exp(ik l
+x)

(
1
0

)
+ a1 exp(−ik l

+x)

(
1
0

)
+ b1 exp(−ik l

−x)

(
0
1

)
, x < 0

c1 exp(ikr
+)

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
+ d1 exp(ikr

−)
( − sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)
, x > L.

(2)

In this equation, kl(r)
± =

√
2m(E − Ul(r) ∓ hl(r))/h̄2 − k2

‖ is the spin-dependent wavevector

along the x-direction in the left (right) FM electrode, E is the single-electron energy which
is conserved when electrons tunnel through the junction, k‖ is the wavevector parallel to
the interface between the different regions and is assumed to be conserved in the quantum
tunnelling process and the explicit wavefunction e(ik‖ y) in every term is omitted in the above
equation. Nevertheless, this is not a required condition for the following derivation. �1

describes a minority-spin electron coming from the left FM lead and being scattered in

3
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Figure 2. A schematic picture of four elementary scattering events. The injecting wavefunction
of an electron will be scattered into four outgoing wavefunctions, two reflections and two
transmissions; e.g., �1(x) denotes a minority spin electron k l+ in the left FM injecting into the
middle region with two reflection (a1 and b1) and two transmission (c1 and d1) wavefunctions.

the middle region; the scattering coefficients a1, b1, c1, and d1 correspond to the normal
reflection, Andreev-type reflection [8], transmission without branch crossing, and transmission
with branch crossing [27], respectively. Here the branch crossing means the injected
wavefunction with wavevector k l+ will become the transmitted kr− or reflected k l− one due to
the noncollinearity. For the other three scattering processes, �i as well as their coefficients ai ,
bi , ci , and di as shown in figure 2 have the same meaning. It is noted that we have omitted the
parallel plane wave component eik‖�r(y,z) in the above equation. When we use the continuity of
the derivatives of wavefunctions at the interfaces to determine these coefficients (ai , bi , ci , and
di ), the parallel momentum k‖ should be explicitly taken into account.

With four elementary scattering wavefunctions like those in equation (2) above, the
single-electron Green’s function of the junction system can be worked out by the McMillan
formula [23], which has been further developed by Kashiwaya and Tanaka [26]. This formula
has been used to treat the Josephson current in a superconductor junction and relate directly
the supercurrent to the Andreev reflection amplitudes. The Green’s function Gr(x, x ′) is
proportional to the direct product of the left-going wavefunctions (processes i = 3, 4 in
figure 2) and the right-going wavefunctions (processes i = 1, 2), Gr ∼ �L(x)�̂R(x ′) for
x � x ′ and Gr ∼ �R(x) ∗ �̂L(x ′) for x � x ′, where the hat ‘∧’ denotes the conjugate
process to the elementary scattering one shown in figure 2, and these conjugate scattering
wavefunctions can be obtained by determining the Hermitian conjugate of only the spinor
part of the wavefunction not including the spatial part of the wavefunction. The reflection
and transmission coefficients ãi , b̃i , c̃i , and d̃i in four conjugate processes have the relations
ãi(φ) = ai(−φ), b̃i (φ) = bi(−φ), c̃i(φ) = ci (−φ), and d̃i(φ) = di(−φ) (i = 1 . . . 4),
where φ is the azimuthal angle of the magnetization of the right FM. With these scattering
wavefunctions of the elementary processes as well as their conjugate processes, the Green’s
function is then constructed in a linear combination as

Gr(x, x ′, E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α1�3(x)�̂1(x
′)+ α2�3(x)�̂2(x

′)+ α3�4(x)�̂1(x
′)

+ α4�4(x)�̂2(x
′), x � x ′

β1�1(x)�̂3(x
′)+ β2�2(x)�̂3(x

′)+ β3�1(x)�̂4(x
′)

+ β4�2(x)�̂4(x
′), x � x ′.

(3)
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Here Gr(x, x ′, E) is implicitly a function of the parallel momentum k‖. The prefactors αi and
βi (i = 1 . . . 4) can be determined by the boundary conditions that the Green’s function fulfills,

∂

∂x
Gr(x, x ′, E)

∣∣∣∣
x=x′+0

− ∂

∂x
Gr(x, x ′, E)

∣∣∣∣
x=x′−0

= 2me

h̄2

(
1 0
0 1

)
, (4)

Gr(x, x ′, E)|x=x′+0 = Gr(x, x ′, E)|x=x′−0. (5)

With these two equations, we can directly solve the prefactors αi and βi in equation (3), which
are independent of the spatial position x . After some direct algebra, they read

α1 = z+c4

c3c4 − d3d4
, α2 = −z−d4

c3c4 − d3d4
,

α3 = −z+d3

c3c4 − d4d4
, α4 = z−c3

c3c4 − d4d4
,

β1 = z+c̃4

c̃3c̃4 − d̃3d̃4

, β2 = −z−d̃4

c̃3c̃4 − d̃3d̃4

,

β3 = −z+d̃3

c̃3c̃4 − d̃3d̃4

, β4 = z−c̃3

c̃3c̃4 − d̃3d̃4

,

(6)

where z± = me

ih̄2kl±
. In these solutions, we have employed some detailed balance conditions to

facilitate our derivation, such as ai(φ) = ai(−φ) (i = 1 . . . 4) and k l−b̃1 = k l+b2. Substituting
these prefactors into equation (3), we obtained the Green’s function in the left FM electrode
(x, x ′ < 0) as

Gr(x, x ′, E) =
(

G11 G12

G21 G22

)
,

G11 = z+ exp(ik l
+|x − x ′|)+ a1z+ exp(−ik l

+x − ik l
+x ′),

G12 = z−b2 exp(−ik l
+x − ik l

−x ′),

G21 = z+b1 exp(−ik l
+x ′ − ik l

−x),

G22 = z− exp(ik l
−|x − x ′|)+ a2z− exp(−ik l

−x − ik l
−x ′).

(7)

The Green’s functions in other regions such as the middle region between the two FMs can
also be constructed in a similar manner according to equation (3) with solutions given in
equation (6). Although the Green’s function is obtained here for the FM/FM junction, this
method can also be applied to nonmagnetic junctions, and we believe the derivation procedure
is universal in mesoscopic junction systems. When the retarded Green’s function of the studied
system is worked out, we can in principle calculate the physical observables that we want. Since
we focus on an equilibrium tunnelling junction, the lesser Green’s function is easily obtained
by the formula [28]

G<(x, x ′, E) = [
Ga(x, x ′, E)− Gr(x, x ′, E)

]
f (E) (8)

where Ga(x, x ′, E) is the advanced Green’s function and f (E) is the Fermi–Dirac distribution
function. The lesser Green’s function is related to the spectral function of the electron and is
very useful for calculating some physical quantities as shown later.

3. ESC in the FM/FM junction

In this section, we first present a general formula of the spin current in an FM and then utilize the
Green’s function obtained in section 2 to work out the ESC in an FM/FM tunnelling junction.

5
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Then, as an example, we calculated the ESC of a simple FM/FM junction with a delta function
insulator barrier between the two FM electrodes.

The local spin density �s(r, t) at position r and time t is defined as

�s(r, t) = �†(r, t)�̂s�(r, t), (9)

where �(r, t) is a two-component wavefunction and �̂s = h̄
2 �̂σ with �̂σ denoting the Pauli spin

matrices. Taking the time derivative of �s(r, t) and using the Schrodinger equation for a single
FM, the continuity equation of spin current density is given by

∂�s
∂ t

+ ∇ · Js + S = 0, (10)

where the respective spin current density Js and the source term S are

Js = h̄2

4mei

[
�†σ∇� − (∇�)†σ�]

,

S = �†(σ × h)�,
(11)

where h is the magnetization of the FM leads (for example, hl, hr). Js is the usual definition
of spin current density and S is referred to as the spin source term or spin torque that leads
to spin rotation when the spin is not collinear with the magnetization h. Therefore, this spin
source term gives rise to a spin current flow which is not included in Js . Using the lesser
Green’s function in equation (8), G<(xt, x ′t ′) = i〈�†(x ′t ′)�(xt)〉 where 〈· · ·〉 is the quantum
statistical average, the spin current density Js and the source term S above in a steady state can
be rewritten as [29]

Js = −h̄2

4me
lim

x′→x

{
∂

∂x ′ − ∂

∂x

}∫
dE

2π
Tr

[
σ G<(x ′, x)

]
, (12)

S = lim
x′→x

∫
dE

2π
Tr

[
(h × σ )G<(x ′, x)

]
, (13)

where the trace is taken over the spin space. Substituting the Green’s function given by
equation (7) and equation (8) into the above equation, we obtain the ESC expression in the
FM/FM junction as

J x
s =

∫
dE

4π

∑
k‖

Re

{
(k l

+ − k l
−)

(
b2

k l−
− b1

k l+

)
exp[−i(k l

+ + k l
−)x]

}
f (E), (14a)

J y
s = −

∫
dE

4π

∑
k‖

Im

{
(k l

+ − k l
−)

(
b2

k l−
+ b1

k l+

)
exp[−i(k l

+ + k l
−)x]

}
f (E), (14b)

J z
s = 0. (14c)

Here the summation over k‖ includes the contribution of all transverse modes to the spin
current, where k‖ is assumed to be conserved in the quantum tunnelling process. According
to the above equation, the spin current density is determined by the Andreev-type reflection
coefficients b1 and b2; this result is very similar to the formula of the Josephson current, which
is directly related to the Andreev reflection coefficients [25, 26]. The spin current density
in equation (14) is exponentially x dependent so that the integral over energy and transverse
density of states will make it disappear in bulk FM not far away from the interface. This
phenomenon is the same as the spin transfer effect in that the transmitted spin current is
also dependent on position and will vanish after summing all possible transverse modes with
different wavevectors. Stiles and Zagwill [6] estimated that the characteristic length of this
spatial spin precession was about 1/kf (kf is the Fermi wavevector) because only the electrons
near the Fermi energy contribute to the electric current. For our case in equation (14), all the

6
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band electrons contribute to the ESC so that Js is expected to decay much more quickly with
distance from the interface.

Apart from the spin current density Js , which can be calculated directly from its definition,
additional spin current flow arises from the source term S according to equation (10). According
to the Gaussian theorem, another spin current Jsoc can be defined from this source term as

J (x)soc =
∫ 0

x
Sx dx =

∫
dE

4π

∑
k‖

Re

{
(k l

+ − k l
−)

(
b2

k l−
− b1

k l+

)
(1 − exp[−i(k l

+ + k l
−)x])

}
f (E)

(15a)

J y
soc =

∫ 0

x
Sy dx = −

∫
dE

4π

∑
k‖

Im

{
(k l

+ − k l
−)

(
b2

k l−
+ b1

k l+

)
(1 − exp[−i(k l

+ + k l
−)x])

}
f (E).

(15b)

The z-component of Jsoc is zero. The x-dependent part of Jsoc is just the −Js in equation (14),
so that the sum of Jsoc and Js is independent of x and keeps constant from the interface to the
bulk FM, which does not disappear away from the interface,

J x =
∫

dE

4π

∑
k‖

Re

{
(k l

+ − k l
−)

(
b2

k l−
− b1

k l+

)}
f (E), (16a)

J y = −
∫

dE

4π

∑
k‖

Im

{
(k l

+ − k l
−)

(
b2

k l−
+ b1

k l+

)}
f (E). (16b)

When a spin current Js enters the bulk FM, it will be absorbed by the lattice in the FM because
the magnetization h rotates the spin, and the sum of Jsoc and Js therefore remains constant.

As an example, we calculated a simple case of the FM/FM tunnelling junction; the
potential energy in both FMs is Ul = Ur = 0, and the insulator barrier is described by a
delta barrier U0δ(x), where U0 denotes the strength of the barrier. The magnitudes of the
magnetizations in the two FMs are equal, hl = hr. Using a simple quantum mechanics method,
we obtain the Andreev-type reflection amplitudes as

b1 = 2(k− − k+)k+ sin θ exp(iφ)/A,

b2 = 2(k− − k+)k− sin θ exp(−iφ)/A,
A = k2

− + k2
+ + 6k+k− − 2k2

0 + 4ik0(k+ + k−)− (k+ − k−)2 cos θ,

(17)

where k± = kl(r)
± and k0 = mU0/h̄2. Substituting these quantities into equation (16), the total

ESC is then given by

J =
∫

dE

π

∑
k‖

Im[1/A(E)](k+ − k−)2 f (E)ĥl × ĥr (18)

where ĥl(0, 0, 1) and ĥr(sin θ cosφ, sin θ sinφ, cos θ) are just the unit vectors of the
magnetizations in the left and right FMs. The ESC depends on the directions of the two
magnetizations not only through the cross product term ĥl × ĥr but also on the quantity A in
equation (17). In the finite barrier case, we can neglect the cos θ term in A so that equation (18)
can reproduce the result obtained with the linear response theory, i.e. the exchange coupling
between two magnetizations leading to the ESC. In the opposite limit, zero barrier between
two FMs, U0 = 0, equation (18) indicates there is no ESC flowing in the junction. This is the
pure quantum mechanics effect; the reflected spin direction by a barrier rotates with respect to
the incident spin direction and an imaginary part can appear in the quantity A of equation (17),
which was regarded [6] as one of the reasons that spin current is not conserved at the interface

7
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when a polarized charge current flows through an NM/FM junction. For the ESC discussed
here, the reflections by a barrier lead to an additional phase to the incident wavefunction,
which is necessary for the formation of ESC in the noncollinear FM/FM junction. It is quite
different from the Josephson effect between two superconductors, in which a Cooper pair
carries supercurrent through the junction even with zero barrier.

4. Summary

We have studied the ESC flowing in the noncollinear FM/FM tunnelling junction by extending
the McMillan Green’s function method. The single-electron Green’s function of the junction
can be constructed by the scattering coefficients, reflection and transmission amplitudes, which
can be directly calculated by a simple quantum mechanics method. In the derived formula of
spin current density, we found that the exact result of the ESC is determined by the Andreev-
type reflection amplitudes as in the Josephson effect, and at the strong barrier our result can
reproduce the well known linear response. It was also found that when there is no barrier
between two FMs the ESC will disappear,as the reflected spin state from a finite barrier has an
additional phase, which is crucial for the formation of the ESC.
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